Refine Your Search

Topic

Author

Search Results

Technical Paper

Tire and Runway Surface Research

1986-11-01
861618
The condition of aircraft tires and runway surfaces can be crucial in meeting the stringent demands of aircraft ground operations, particularly under adverse weather conditions. Gaining a better understanding of the factors influencing the tire/pavement interface is the aim of several ongoing NASA Langley research programs which are described in this paper. Results from several studies conducted at the Langley Aircraft Landing Dynamics Facility, tests with instrumented ground vehicles and aircraft, and some recent aircraft accident investigations are summarized to indicate effects of different tire and runway properties. The Joint FAA/NASA Runway Friction Program is described together with some preliminary test findings. The scope of future NASA Langley research directed towards solving aircraft ground operational problems related to the tire/pavement interface is given.
Technical Paper

A Faster “Transition” to Laminar Flow

1985-11-01
851855
A discussion is given of the ongoing research related to laminar flow airfoils, nacelles, and wings where the laminar flow is maintained by a favorable pressure gradient, surface suction or a combination of the two. Design methologies for natural laminar flow airfoil sections and wings for both low and high speed applications are outlined. Tests of a 7-foot chord, 23° sweep laminar-flow-control-airfoil at high subsonic Mach numbers are described along with the associated stability theory used to design the suction system. The state-of-the-art of stability theory is simply stated and a typical calculation illustrated. In addition recent computer simulations of transition using the time dependent Navier-Stokes (N-S) equations are briefly described. Advances in wind tunnel capabilities and instrumentation will be reviewed followed by the presentation of a few results from both wind tunnels and flight. Finally, some suggestions for future work will complete the paper.
Technical Paper

Aircraft Landing Dynamics Facility, A Unique Facility with New Capabilities

1985-10-01
851938
The Aircraft Landing Dynamics Facility (ALDF), formerly called the Landing Loads Track, is described. The paper gives a historical overview of the original NASA Langley Research Center Landing Loads Track and discusses the unique features of this national test facility. Comparisions are made between the original track characteristics and the new capabilities of the Aircraft Landing Dynamics Facility following the recently completed facility update. Details of the new propulsion and arresting gear systems are presented along with the novel features of the new high-speed carriage. The data acquisition system is described and the paper concludes with a review of future test programs.
Technical Paper

Status of Wind Tunnel Magnetic Suspension Research

1985-10-01
851898
This paper reports the status of the NASA Langley Research Center program aimed at the development of the technology required for large-scale Magnetic Suspension and Balance Systems. The use of magnetic suspension of the model in a wind tunnel is seen to be the only viable method to eliminate aerodynamic interference problems arising with mechanical model-supports. The two small-scale magnetic suspension systems in operation at Langley are the only ones now active in the U.S. The general features and capabilities of these two systems and all of the ongoing research in the use of magnetic suspension are described.
Technical Paper

An Investigation of the Effects of the Propeller Slipstream on a Laminar Wing Boundary Layer

1985-04-01
850859
A research program is in progress to study the effects of the propeller slipstream on natural laminar flow. Flight and wind tunnel measurements of the wing boundary layer have been made using hot-film velocity sensor probes. The results show the boundary layer, at any given point, to alternate between laminar and turbulent states. This cyclic behavior is due to periodic external flow turbulence originating from the viscous wake of the propeller blades. Analytic studies show the cyclic laminar/turbulent boundary layer layer to result in a significantly lower wing section drag than a fully turbulent boundary layer. The application of natural laminar flow design philosophy yields drag reduction benefits in the slipstream affected regions of the airframe, as well as the unaffected regions.
Technical Paper

Simulation Study of an Automatic Trim System for Reducing the Control Forces on a Light Twin After an Engine Failure

1985-04-01
850913
An automatic trim system for reducing the control forces after an engine failure on a light twin has been investigated on the Langley General Aviation Simulator. The system schedules open-loop trim tab deflections as a function of differential propeller slipstream dynamic pressure and freestream dynamic pressure. The system is described and the airplane-system static and dynamic characteristics are documented. Three NASA research pilots evaluated the effectiveness of the system for takeoff and landing maneuvers. A variety of off-nominal system characteristics were studied. The system was judged to be generally beneficial, providing a 2 to 3 point improvement in pilot rating for the tasks used in the evaluations.
Technical Paper

Flight Investigation of Natural Laminar Flow on the Bellanca Skyrocket II

1983-02-01
830717
Two major concerns have inhibited the use of natural laminar flow (NLF) for viscous drag reduction on production aircraft. These are the concerns of achieveability of NLF on practical airframe surfaces, and maintainability in operating environments. Previous research in this area left a mixture of positive and negative conclusions regarding these concerns. While early (pre-1950) airframe construction methods could not achieve NLF criteria for waviness, several modern construction methods (composites for example) can achieve the required smoothness. This paper presents flight experiment data on the achieveability and maintainability of NLF on a high-performance, single-propeller, composite airplane, the Bellanca Skyrocket II. The significant contribution of laminar flow to the performance of this airplane was measured. Observations of laminar flow in the propeller slipstream are discussed, as are the effects of insect contamination on the wing.
Technical Paper

The All Electric Airplane - Benefits and Challenges

1982-02-01
821434
A brief definition of an “All Electric Airplane” will be presented. Several NASA and DOD studies have examined the application of advanced electric/electronic technologies. The benefits identified in these studies will be summarized. The state-of-the-art in all electric airplane technology will be described. A NASA program has been proposed to develop the necessary technology base for industry application. The elements of this proposed program will be discussed.
Technical Paper

Review of NASA Antiskid Braking Research

1982-02-01
821393
NASA antiskid braking system research programs are reviewed. These programs include experimental studies of four antiskid systems on the Langley Landing Loads Track, flight tests with a DC-9 airplane, and computer simulation studies. Results from these research efforts include identification of factors contributing to degraded antiskid performance under adverse weather conditions, tire tread temperature measurements during antiskid braking on dry runway surfaces, and an assessment of the accuracy of various brake pressure-torque computer models. This information should lead to the development of better antiskid systems in the future.
Technical Paper

Air Transport Flight Parameter Measurements Program – Concepts and Benefits

1980-09-01
801132
A program is described in which statistical flight loads and operating practice data for airline transports in current operations are obtained from existing onboard digital flight data recorders. These data, primarily intended for use by manufacturers in updating design criteria, were obtained from narrow-body and wide-body jets. Unique procedures developed for editing and processing the data are discussed and differences from previous NACA/NASA VGH analog data are noted. The program is being expanded to include control surface and ground-operational parameters. Efforts to develop an onboard data processing system to derive direct statistical aircraft operating parameters are reviewed.
Technical Paper

Spin Flight Research Summary

1979-02-01
790565
An extensive general aviation stall/spin research program is underway at the NASA Langley Research Center. Flight tests have examined the effects of tail design, wing leading edge design, mass distribution, and minor airframe modifications on spin and recovery characteristics. Results and observations on test techniques are presented for the first airplane in the program. Configuration changes produced spins varying from easily recoverable slow, steep spins to unrecoverable, fast flat spins.
Technical Paper

Light Aircraft Crash Safety Program

1974-02-01
740353
The Federal Aviation Administration (FAA) and the National Aeronautics and Space Administration (NASA) have joined forces in a General Aviation Crashworthiness Program. This paper describes the research and development tasks of the program which are the responsibility of NASA. NASA is embarked upon research and development tasks aimed at providing the general aviation industry with a reliable crashworthy airframe design technology. The goals of the NASA program are: reliable analytical techniques for predicting the nonlinear behavior of structures; significant design improvements of airframes; and simulated full-scale crash test data. The analytical tools will include both simplified procedures for estimating energy absorption characteristics and more complex computer programs for analysis of general airframe structures under crash loading conditions.
Technical Paper

APPLICATIONS OF ADVANCED AERODYNAMIC TECHNOLOGY TO LIGHT AIRCRAFT

1973-02-01
730318
This paper discusses a project for adapting advanced technology, much of it borrowed from the jet transport, to general aviation design practice. The NASA funded portion of the work began in 1969 at the University of Kansas and resulted in a smaller, experimental wing with spoilers and powerful flap systems for a Cessna Cardinal airplane. The objective was to obtain increased cruise performance and improved ride quality while maintaining the take-off and landing speeds of the unmodified airplane. Some flight data and research pilot comments are presented. The project was expanded in 1972 to include a light twin-engine airplane. For the twin there was the added incentive of a potential increase in single-engine climb performance. The expanded project is a joint effort involving the University of Kansas, Piper Aircraft Company, Robertson Aircraft Company, and Wichita State University. The use of a new high-lift Whitcomb airfoil is planned for both the wing and the propellers.
Technical Paper

NASA Aerodynamic Research Applicable to Business Aircraft

1971-02-01
710378
A review is made of NASA aerodynamic research of interest to the designer of business aircraft. The results of wind-tunnel and flight studies of several current aircraft are summarized. The attainment of STOL performance is discussed and the effectiveness of several lift augmentation concepts is examined. Finally, the potentialities and problems of flight at and beyond the speed of sound are discussed.
X